4 research outputs found

    Natural gas of radiolytic origin: An overlooked component of shale gas.

    Get PDF
    SignificanceNatural gas is a key fossil fuel as the world transitions away from coal toward less polluting energy sources in an attempt to minimize the impact of global climate change. Historically, the origin of natural gas produced from conventional reservoirs has been determined based on gas compositional data and stable isotope fingerprints of methane, ethane, and higher n-alkanes, revealing three dominant sources of natural gas: microbial, thermogenic, and abiotic. In our detailed synthesis of published natural gas data from a variety of unconventional hydrocarbon reservoirs worldwide, we demonstrate that there is a previously overlooked source of natural gas that is generated by radiolysis of organic matter in shales

    Natural gas of radiolytic origin: An overlooked component of shale gas

    No full text
    International audienceNatural gas is an important fossil energy source that has historically been produced from conventional hydrocarbon reservoirs. It has been interpreted to be of microbial, thermogenic, or, in specific contexts, abiotic origin. Since the beginning of the 21st century, natural gas has been increasingly produced from unconventional hydrocarbon reservoirs including organic-rich shales. Here, we show, based on a careful interpretation of natural gas samples from numerous unconventional hydrocarbon reservoirs and results from recent irradiation experiments, that there is a previously overlooked source of natural gas that is generated by radiolysis of organic matter in shales. We demonstrate that radiolytic gas containing methane, ethane, and propane constitutes a significant end-member that can account for >25% of natural gas mixtures in major shale gas plays worldwide that have high organic matter and uranium contents. The consideration of radiolytic gas in natural gas mixtures provides alternative explanations for so-called carbon isotope reversals and suggests revised interpretations of some natural gas origins. We submit that considering natural gas of radiolytic origin as an additional component in uranium-bearing shale gas formations will lead to a more accurate determination of the origins of natural gas

    Potential Impacts of Shale Gas Development on Inorganic Groundwater Chemistry: Implications for Environmental Baseline Assessment in Shallow Aquifers

    No full text
    The potential contamination of shallow groundwater with inorganic constituents is a major environmental concern associated with shale gas extraction through hydraulic fracturing. However, the impact of shale gas development on groundwater quality is a highly controversial issue. The only way to reliably assess whether groundwater quality has been impacted by shale gas development is to collect pre-development baseline data against which subsequent changes in groundwater quality can be compared. The objective of this paper is to provide a conceptual and methodological framework for establishing a baseline of inorganic groundwater quality in shale gas areas, which is becoming standard practice as a prerequisite for evaluating shale gas development impacts on shallow aquifers. For this purpose, this paper first reviews the potential sources of inorganic contaminants in shallow groundwater from shale gas areas. Then, it reviews the previous baseline studies of groundwater geochemistry in shale gas areas, showing that a comprehensive baseline assessment includes documenting the natural sources of salinity, potential geogenic contamination, and potential anthropogenic influences from legacy contamination and surface land use activities that are not related to shale gas development. Based on this knowledge, best practices are identified in terms of baseline sampling, selection of inorganic baseline parameters, and definition of threshold levels
    corecore